
newsLens: building and visualizing long-ranging news stories∗

Philippe Laban
UC Berkeley

phillab@berkeley.edu

Marti Hearst
UC Berkeley

hearst@berkeley.edu

Abstract

We propose a method to aggregate and
organize a large, multi-source dataset of
news articles into a collection of major sto-
ries, and automatically name and visualize
these stories in a working system. The ap-
proach is able to run online, as new arti-
cles are added, processing 4 million news
articles from 20 news sources, and extract-
ing 80000 major stories, some of which
span several years. The visual interface
consists of lanes of timelines, each anno-
tated with information that is deemed im-
portant for the story, including extracted
quotations. The working system allows a
user to search and navigate 8 years of story
information.

1 Introduction

Complex news events unfold over months, and the
sequence of events over time can be thought of as
forming stories. Our objective is to generate, from
publicly available news articles, story outlines and
visualizations that help readers digest and navigate
complex, long-lasting stories across a large num-
ber of news articles. We attempt this construction
of stories by building a dataset with multiple news
sources, exploiting the overlap in coverage by dif-
ferent sources. Our contributions include:

1. A method for creating a dataset of articles
from multiple sources across a decade from
scratch,

2. A topic detection method that handles inter-
ruption in topics,

3. A novel way to name stories, and
∗In the proceedings of the 2017 ACL Workshop on Events

and Stories in the News

4. A method for clustering, rating, and display-
ing quotations associated with the stories.

The demo is available at
newslens.berkeley.edu/

The remainder of the paper is organized as fol-
lows. Section 2 presents current related research
work. The aggregation of the dataset and the cre-
ation of the timelines is explained in Section 3.
Section 4 presents the interface with the created
timelines, as well as the extraction process for the
information shown. Finally Section 5 concludes
the paper and presents future work directions.

2 Related Work

Related work includes prior methods for generat-
ing stories from topics, for visualizing stories, and
for summarizing news.

Topic Detection and Tracking refers to tech-
niques to automatically process a streamable
dataset of text into related groups called topics.
In the context of news, the topics detected and
tracked are commonly called stories.

Swan and Allan (2000) use the Topic Detection
and Tracking (TDT) and TDT2 datasets, consist-
ing of 50,000 news articles to produce 146 stories,
called clusters. The clustering process is done us-
ing named entities and noun phrases, as opposed to
unigrams. They report an inability to merge clus-
ters if there are large gaps in time with no articles,
and their algorithm does not group documents in
an online fashion.

Pouliquen et al. (2008) build a large dataset of
news articles, named the Europe Media Monitor
(EMM). Their topic detection creates local clus-
ters in each language. The monolingual stories are
then linked across languages to form global sto-
ries. A reported drawback is the clustering cannot
handle merging and splitting between disparate

newslens.berkeley.edu/


topics and cannot mend gaps between stories that
last more than 8 days.

Ahmed et al. (2011) propose an online infer-
ence model named Storylines that clusters articles
into storylines which are assigned to broader top-
ics. Emphasis is put on scalability with a goal of
processing one article per second.

Poghosyan and Ifrim (2016) leverage keywords
in social media to generate storylines, and Vossen
et al. (2015) propose to use news timelines to build
storylines, structured index of events in the time-
line, and event relationships.

Visualizing news stories focuses on building
a user interface to present a given story to help
the user digest a complex story. Using the EMM
dataset, Krstajić et al. (2013) propose a visual an-
alytics system to represent relationships between
news stories and their evolution over time. Each
story element is represented as a tile in a vertical
list. Over time (x-axis), the placement of story el-
ements is adjusted on the vertical axis according
to the level of activity in the story.

Shahaf et al. (2012) propose a “Metro map”
view for a given story. Article headlines are se-
lected in the story corpus to maximize coverage
of pieces of information. The selected items are
put in different “lines” of the metro maps, showing
how the story developed. Only headline informa-
tion is accessible on the produced metro map.

Tannier and Vernier (2016) build timelines for
journalistic use. Based on a user query, docu-
ments are retrieved and dates are extracted from
sentences. A timeline is built where peaks repre-
sents important dates, and key dates are annotated
with representative article headlines and an image
from the article when available.

3 The newsLens pipeline

In order to build news stories over long time spans
based on a variety of news sources, there are two
main challenges: an organizational challenge of
collecting news articles, and an algorithmic and
computational challenge of building the stories.
We describe our solutions to both problems.

We first describe how we use the Internet
Archive to recover a dataset of news articles.
Given an article dataset, we propose a lightweight
pipeline to process articles into topics in a stream-
able fashion, so that timelines can be updated as
new articles are added. The pipeline we pro-
pose has the following stages: extracting key-

Table 1: Number of articles collected by source
Source name # articles
reuters.com 1.2 million
allafrica.com 1 million
foxnews.com 475000
washingtonpost.com 440000
telegraph.co.uk 390000
france24.com 250000
nytimes.com 230000
cnn.com 140000
theguardian.com 51000
Other sources 166000

words from articles, creating topics: local groups
of articles in time, solidifying the local topic clus-
ters into stories: long-ranging sets of articles that
share a common theme, and automatically naming
the stories. We then present timing measurements
for each step of the pipeline.

3.1 Collecting news articles

For each article in our dataset, we require some
information, from which we can build the features
needed for our processing. The minimum infor-
mation required is: the publication date, the url,
the headline, and the content of the article. Most
common news sources build their news websites
with specific patterns, to make their articles easier
to index. For instance, CNN.com, France24.com
and NYTimes.com article urls match the follow-
ing regular expressions, respectively:

http://cnn.com/yyyy/mm/dd/*
http://france24.com/en/yyyymmdd*
http://nytimes.com/yyyy/mm/dd/*

We collected 20 such patterns from globally
recognized English-language news sources, and
collected all news articles matching these patterns
through the Internet Archive’s advanced search in-
terface. We start our collection on January 1st
2010 and collect until the present time. The pub-
lication date is extracted from the url pattern, and
we access the news article’s webpage to extract the
headline and content.

A somewhat unexpected complication we faced
was the process of deduplicating some articles.
Some news agencies publish up to 7 different ver-
sions of a news article, each with a very minor
change (for instance, to the headline, or by adding
or removing a single sentence to the content). Be-



cause we use counts of articles to measure impor-
tance and create stories, it is important to remove
duplicate articles. We apply a simple but effective
method:

1. For a given source, group articles into small
ranges of time (e.g. 1 week),

2. Compute bag of word vectors for each article,

3. Transform the bag of words for each group
into a tf-idf matrix,

4. If two articles are above a certain cosine sim-
ilarity, they are assumed to be duplicates,

5. Retain only the most recent article, as it may
have corrected information.

Roughly 10% of articles across all sources are
deleted in the deduplication process. After dedu-
plication, our dataset contains 4 million news arti-
cles in English, or an average of 1,500 articles per
day. The detail of number of articles per source
is given in Table 1. A study of how article du-
plicates are created and the types of modifications
that news sources create would be interesting.

3.2 Generating the topics

3.2.1 Extracting article keywords

We use a standard method to extract keywords
from an article’s content. Given a set of articles
with no keywords, we represent each document as
a bag of words vector. We apply a tf-idf transform
on the bag of words corpus and select a word wi

in document dj as a keyword for the document if
the tf-idf score S(wi, dj) > T , where T is manu-
ally set. If we are trying to extract keywords for a
large dataset, we process the articles in batches of
a fixed size and randomize the order in which we
take the articles. Each article is processed a single
time. The keywords are lemmatized and lower-
cased. Although simple, this approach is effective:
for the France24 news article with headline:

Battle to retake Mosul from Islamic
State group has begun, says Iraqi

the keywords obtained are:

shiite, force, abadi, militia, mosul, iraq

3.2.2 Local topic graph
There is not one clear definition of when two arti-
cles are about the same “story” in news. Our goal
is to cluster articles into local groups we call top-
ics, which are then merged over time into stories.
We define two articles to be in the same topic if
they share several keywords, and are published in
a close range of time.

We propose to group articles into common local
topics by building a graph of articles. The algo-
rithm for building the graph is:

1. For each article ai over a small range of N
days, prepare keyword set kwi

2. Articles (ai, aj) are assigned an edge be-
tween them if ‖kwi ∩ kwj‖ ≥ T2, where T2
is a manually set threshold.

An example graph obtained over a range of 6 days
is shown in Figure 1. The graph obtained is not
connected and has several components. One can
think at first that each component represents a
story, however, it is possible for different densely
connected topics to erroneously connect over a
few edges. This can be seen on Figure 1, where
two large components: the Ferguson and Hong
Kong protests are loosely connected by a single
edge. To avoid the problem of merging topics due
to erroneous edges, we use a community detection
algorithm, whose role is to find correct assignment
of the nodes into communities that maximize a
quality function on the communities obtained. We
use a standard community detection algorithm, the
Louvain method (Blondel et al., 2008), which is
both lightweight and efficient at finding the cor-
rect clusters. It can be seen in Figure 1 that the
Louvain method correctly assigns the two protests
to different communities.

3.2.3 From topics to stories
So far we have presented a method to group arti-
cles into topics that are local in time. However,
it is not computationally tractable to process the
graph for a large number of days, given that we
have a total of N ' 3000 days to process. Apart
from the computational complexity, we would like
a streamable method where adding new articles
updates already existing stories and creates new
ones, while avoiding recomputing all stories from
scratch. The method we propose to merge top-
ics into long-ranging stories is two-fold: a sliding



Figure 1: Local topic graph from June 10th 2014 to June 16th 2014. Nodes on the graph are news articles,
edges are placed according to our method. Color of the node represents the topic assigned by community
detection. Even though the Ferguson and Hong Kong protests form a single connected component, they
get assigned to different communities. Keywords are placed on the display for convenience of the reader.

window to enlarge the topics, and a topic match-
ing process for stories that might be interrupted in
time.

The first step is to run the local topic assign-
ment in chronological order using a sliding win-
dow. For instance, if we choose N = 5 for the
number of days in a local graph, and 50% for the
window overlap, the topic assignment is first run
for days 1 to 6, and then run for days 3 to 8, etc.
This sequence of overlapping graph clustering cre-
ates interesting dynamics. Linking, splitting, and
merging are three phenomena we believe are im-
portant for story generation from topics.

Linking consists of assigning a topic from a
preceding graph to a topic in the current graph:
given a cluster in the current graph, if a majority of
nodes in the cluster have previously been assigned
another topic (in a previous graph, because of the
sliding window), no new topic is created, and the
cluster is assigned to the old topic, enabling topics
to span more thanN days. Linking happens for in-
stance on the story about the French elections, that
lasted more than 5 days: the articles from the first
5 days formed a topic, and as later articles appear,

they are linked into this topic that already exists.
The story experiences no interruption greater than
5 days (the span of the window) from January 15th
to May 10th 2017, and linking combines all arti-
cles in a single topic.

Splitting occurs when one topic is later on di-
vided into 2 distinct topics: it can happen that a
topic’s start, a few initial articles are clustered to-
gether, and then diverge into clusters that are de-
tected as separate by the community detection. In
this case, the smallest cluster gets assigned to a
new topic. An example of splitting: the shooting
of Jo Cox (Brexit story), and the Orlando Shoot-
ing occurred within a few days of each other. The
first articles covering each topic were at first as-
signed in the same topic, due to enough common
keywords (shooting, death, killing, etc). However
as each story grew with new articles, the topics be-
came more distinct, at which point the topics were
split.

Merging is similar to linking: if a current clus-
ter found contains articles that have already been
assigned to two distinct old topics, both topics are
merged. An example of merging: the “Olympics



in Rio” and the topic related to “Athletes worried
about the Zika virus” were at first separated, but
as the Athletes arrived in Rio, the stories were
merged. This does not occur as often as linking
and splitting.

A story is what emerges when many local top-
ics are linked or merged. With linking, we see
how local topics can be connected into stories with
an unbounded time span. As long as a topic has
new articles appearing continuously, all articles
are linked to the same topic, and the story grows.

The assumption that a story must be uninter-
rupted is constraining, as some stories can have ar-
bitrarily large gaps in time. Consider the “MH317
Malaysia Airline plane crash” story shown in Fig-
ure 4, where new evidence was found a few
months after the crash, and then again years after
the crash happened. The second step for creating
stories is to merge topics into a common story if
they do not overlap in time but are similar enough
in keyword distribution. We build a vector v(ti)
for topic ti which contains the counts of keywords
in all articles of topic ti. When a new topic tj is
created, its similarity to old topics is computed us-
ing a cosine similarity:

sim(ti, tj) =
v(ti) · v(tj)
‖v(ti)‖‖v(tj)‖

If the similarity is above a threshold T3, and the
two topics do not overlap in time significantly, the
topics are merged. The final topics obtained after
these two steps represent the stories we will dis-
play in our interface. The choice of T2 and T3
affect the precision and recall of the algorithm. In-
creasing T2 reduces the number of edges on the
graph, reducing the number of articles placed in
topics. In our implementation, we choose high
thresholds (T2 = 4, T3 = 0.8), which limits the
number of errors (high precision). The drawback
is that only 10% of articles of the overall dataset
get assigned to topics. When setting T2 = 3, the
number of articles in topics raises to 20%, but we
expect more incorrect topics to be created.

3.2.4 Naming stories
Finding a good name to represent the story that
can encompass several thousands of articles is
challenging. We propose a simple system based
on observations of what makes a good title for
a topic. Here are examples of good titles we
want to be able to pick: “North Korea nu-
clear tests”, “Ukraine crisis”, “Ebola outbreak”,

“Brexit vote”, “Paris attacks”. The features these
names have in common are:

1. A story name is a noun phrase,

2. It contains a proper noun (entity),

3. It contains a common noun or word, and

4. One of the words is abstract (test, crisis, out-
break, ...).

For each headline in our story, we extract all
maximal noun phrases and assign a score to each.
For example, in the headline below (from tele-
graph.co.uk), noun phrases are underlined:

Pakistan frees Taliban prisoners to help
Afghan peace process

Notice that noun phrases such as “peace process”
and “prisoners” are not proposed as they are en-
closed in a larger (maximal) noun phrase. The
highest scoring noun phrase is chosen as the name
of the story. Here are the features used to score a
noun phrase p:

1. f1(p) = 1 if there is a proper noun else 0

2. f2(p) = 1 if there is a common noun else 0

3. f3(p) = log10(count(p)), where count(p) is
the number of occurrences of phrase p in all
headlines of the story

4. f4(p) =
∑

w∈p f(w), w are the words in p,
f(w) is the frequency of w in the titles

5. f5(p) = maxw∈p abstractness(w), where
abstractness(w) is a word abstractness
measure (Kato et al., 2008)

6. f6(p) = length(p), number of words in p

The final score is then computed as a linear
combination of the features:

score(p) =
6∑

i=1

λifi(p)

We choose the λi manually, and pfinal =
argmaxpscore(p). The five titles presented
above are results for some of the major stories
available in the system.



Figure 2: “lanes” interface. The 7 stories with most articles in 2016 are shown in timeline format.

Table 2: Timings of the pipeline. Time per unit, is
a time per processed element. Total time is when
running the pipeline on the entire dataset.

Process name Time per unit Total time
Internet Archive 4 min / source 80 min

Populating articles 0.05 sec / article 2.3 days
Extracting keywords 0.01 sec / article 12 hrs

Creating stories 2 sec / day 4 hours
Naming stories 0.02 sec / story 20 min

3.3 Processing Times

The processing speed determines the system’s ca-
pacity, if it is to run in real-time. Table 2 presents
the speed per unit for each stage of the pipeline,
as well as the total time spent when processing 20
sources, with 4 million articles over 7 years.

4 Visualizing stories with lanes

We have now presented a method to retrieve 4 mil-
lion news articles and organize them into more
than 80000 stories. Many of these stories have
hundreds or thousands of articles. We are posed
with the visualization challenge of displaying con-
tent in an understandable manner. The follow-
ing section introduces lanes, the interface we pro-
pose to represent stories. Lanes is composed of
three components: a timeline, article headlines
and quotes tiles. Figure 3 presents two example

lanes generated by our system.

4.1 Story timeline

The overall interface is framed on the x-axis rep-
resenting time, each element added has a given
x-position representing its occurrence within the
story. We use a timeline as the main visual repre-
sentation of the topic. The x-axis represents time,
and the y-axis represents the number of articles in
a given short period of time. This timeline creates
a shape the user can identify the story with. Fig-
ure 2 shows the timelines of the 7 stories in year
2016 with most news articles. The assumption we
follow is that major events in a topic lead to more
news articles in a following short period of time,
which can be made prominent in the timeline of
the overall topic by a peak. For example, in Fig-
ure 2, it appears that the most active periods for
the story “Keystone XL pipeline” are in February,
October and November 2016.

The timelines of Figure 2 help the user see
“when” action occurred in a given story. The
following two subsections present the annotations
added when a user clicks on a chosen timeline.
The annotations help understand the “what” and
the “who” of the timeline, respectively.



Figure 3: “Refugee crisis” story. Top to bottom: time legend, article headlines, timeline, and quote tiles.

Figure 4: Timeline of the “Malaysia Airline flight MH370”, it has large time gaps with no articles.

4.2 Headline selection

Because we assume that peaks in the timeline of
the story correspond to key times in the story, we
propose to annotate these points for the reader.
We sample news articles from peak periods of the
story and add their headlines as annotation to the
timeline. This allows the user to get an idea of
what occurred during that period of the topic. The
headline is clickable and takes the user to the arti-
cle’s original URL. This enables the user to access
articles about a topic that can be several years old.
When selecting which article to display for a given
peak, we randomly sample an article. Added to
the article headline is an image icon representing
the logo of the news source, which helps the user
know the source of the headline at a glance.

There can be stories where many peaks happen
in a short period of time, in which case the visu-
alization would become cluttered. We impose a
hard constraint in the visualization: headline an-
notations cannot overlap, and they are placed on
a number of “rows” above the timeline. A maxi-
mum number of headline rows is allowed, and if
a headline cannot be placed because of a lack of

space, it is not displayed. Headlines are placed
in decreasing order of their peak heights, so that
more “more important” peaks get placed first.

4.3 Quote ranking and selection

Figure 5: Dependency tree of a quote sentence il-
lustrating how extraction process. This figure was
generated using a modified version of displaCy.

We assume showing headlines annotations on
the timeline helps the news reader answer the
“what” of the story. We are experimenting with
adding additional kinds of information to the inter-
face. The first of these is quotations extracted from
the article that are assumed to be important. Quote
extraction is an active field of research (Pouliquen
et al., 2007; O’Keefe et al., 2012). Our objective is
to build a simple system to experiment with rank-
ing and displaying the quotes. This process is done
in 3 steps: entities are extracted, quotes for these



entities are extracted and then grouped and scored
for importance.

We extract entities from all articles using an
NLP library named spaCy. In order to re-
duce entity duplication, we proceed with a sim-
ple entity linking process leveraging Wikidata
(Vrandečić and Krötzsch, 2014). Each entity
string is searched through Wikidata’s search in-
terface. Wikidata provides unique identifiers that
match the search query. The first identifier in the
query result is associated with the entity string.
This allows us to merge entities such as: “Obama”,
“Barack Obama”, “Mr. Obama”, etc

Entity disambiguation is a complex task, and al-
though Wikidata is a first step in resolving entities,
it also introduces errors. For instance, many news
articles mention ”Washington” as the author of a
quote. When searching for Washington in Wiki-
data, the first entry that appears is “George Wash-
ington” instead of the city of Washington D.C. Ad-
ditional patterns verifying the span of life and en-
tity types could be put in place, but overall, this
is a complex task and we will introduce more so-
phisticated entity recognition in future work.

Once entities are extracted, the next step is to at-
tribute quotes to the entities. To extract quotes, we
look at each individual sentence in our corpus and
determine whether it is a quote by a known entity.
The method for quote extraction is the following:

1. The sentence is parsed into a dependency tree

2. Check if the subject (NSUBJ) of the root verb
of the sentence is a known entity

3. Check if the lemma of the root verb is in a
predefined list (say, tell, state, ...)

4. Check if the root has a complementary clause

5. If all checks are validated, extract the pair
(entity, quote)

For example given the sentence from a Reuters
article:

The self-exiled Dalai Lama says he
merely seeks genuine autonomy for his
Himalayan homeland.

The dependency tree for this sentence is shown in
Figure 5. We can see that for this sentence, all
three conditions are met and the quote pair ex-
tracted is: (Dalai Lama, “he merely seeks genuine

autonomy for his Himalayan homeland.”). The de-
pendency parsing is also achieved with the spaCy
library.

This process does not extract all quotes as the
pattern recognition we propose is fairly rigid. For
now, we accept the low recall for a high preci-
sion in the quotes extracted, as we assume users
would react more negatively to erroneous quotes
than missing quotes. This produces on average 2
quotes per news article, which can represent thou-
sands of quotes for a single story, which is too
much to show to users. We propose a simple way
to cluster quotes together to find important quotes.

Quotes are transformed into bag of words vec-
tors, and the tf-idf transform is applied to the quote
vector corpus. Quotes can then be compared us-
ing a cosine similarity measure. Two quotes are
judged to be in the same “quote cluster” if they
are from articles that are close in time, and they
meet a minimum cosine similarity.

Once quote clusters are obtained, the size of the
cluster is our measure for the quote cluster’s im-
portance. This assumes that a quote that is men-
tioned by several journalists from various sources
has more importance in the story.

We can now rank quotes in order of importance
and show a limited number of quotes in the “lanes
interface”. Each quote cluster is represented by
an image tile of the entity speaking. When click-
ing on a tile, a frame showing the list of quotes
in the cluster opens. Figure 6 shows one result of
opening a quote tile: four quotes from the cluster
are displayed, as well as the source from which the
quote is extracted. Clicking on the quote opens the
article from which the quote was extracted. In this

Figure 6: Interface that opens upon a user’s click
on a quote. Quotes shown were assigned to a com-
mon cluster in the story named “Iran nuclear talks”

example, we can see that the quote cluster contains



quotes from Reuters, CNN and the NYTimes. The
phrasing of each quote is slightly different, show-
ing that sources modify and specify detail in their
quote.

The lanes interface presents the stories as time-
lines annotated both with headlines at key times,
as well as quotes representing main actors within
the story.

5 Conclusion and Future Work

We have presented a method to build a dataset
of news articles over a long range of time from
several sources and an efficient, novel algorithm
for organizing millions of articles into stories that
span long time ranges, despite gaps in coverage.
These stories are named with a simple but effective
algorithm and visualized using a lanes metaphor,
providing the user with a way to view each story
in more detail.

Future work includes an assessment of the accu-
racy of the story creation algorithm: both the ac-
curacy within stories, verifying that articles within
a given story are related, and across stories, verify-
ing that story humans would agree with the stories
we propose. We also plan to continue refining the
user interface and assess it with journalists, me-
dia analysts and other relevant end users: we will
compare our interface with other news aggregator
systems such as Google News, to assess the us-
ability of this approach.

Future work will also leverage the considerable
related work on event detection and event pat-
tern understanding, and incorporating that into the
story creation process.

Finally, source bias and information validity
are important, in the context of alternative news
sources and social media. An interface that
presents the facts with the source of the informa-
tion in a transparent way, as well as the results of
calculating biases of news sources from a compu-
tational perspective is a future direction of interest.

References
Amr Ahmed, Qirong Ho, Jacob Eisenstein, Eric Xing,

Alexander J Smola, and Choon Hui Teo. 2011. Uni-
fied analysis of streaming news. In Proceedings
of the 20th international conference on World wide
web. ACM, pages 267–276.

Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Jour-

nal of statistical mechanics: theory and experiment
2008(10):P10008.

Makoto P. Kato, Hiroaki Ohshima, Satoshi Oyama, and
Katsumi Tanaka. 2008. Can social tagging improve
web image search? In International Conference
on Web Information Systems Engineering (WISE).
Springer, pages 235–249.

Miloš Krstajić, Mohammad Najm-Araghi, Florian
Mansmann, and Daniel A Keim. 2013. Story
tracker: Incremental visual text analytics of news
story development. Information Visualization 12(3-
4):308–323.

Tim O’Keefe, Silvia Pareti, James R Curran, Irena Ko-
prinska, and Matthew Honnibal. 2012. A sequence
labelling approach to quote attribution. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning. Association
for Computational Linguistics, pages 790–799.

Gevorg Poghosyan and Georgiana Ifrim. 2016. Real
time news story detection and tracking with hash-
tags. In Computing News Storylines Workshop at
EMNLP 2016, Austin, Texas.

Bruno Pouliquen, Ralf Steinberger, and Clive Best.
2007. Automatic detection of quotations in multi-
lingual news. In Proceedings of Recent Advances in
Natural Language Processing. pages 487–492.

Bruno Pouliquen, Ralf Steinberger, and Olivier
Deguernel. 2008. Story tracking: linking similar
news over time and across languages. In Proceed-
ings of the workshop on Multi-source Multilingual
Information Extraction and Summarization. Associ-
ation for Computational Linguistics, pages 49–56.

Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. 2012.
Trains of thought: Generating information maps. In
Proceedings of the 21st international conference on
World Wide Web. ACM, pages 899–908.

Russell Swan and James Allan. 2000. Automatic gen-
eration of overview timelines. In Proceedings of
the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval. ACM, pages 49–56.

Xavier Tannier and Frdric Vernier. 2016. Creation, Vi-
sualization and Edition of Timelines for Journalis-
tic Use. In Proceedings of Natural Language meets
Journalism Workshop at IJCAI 2016. New York,
USA.

Piek Vossen, Tommaso Caselli, and Yiota Kont-
zopoulou. 2015. Storylines for structuring massive
streams of news. In Proceedings of the First Work-
shop on Computing News Storylines. pages 40–49.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM 57(10):78–85.


